(Pages: 4)
Name.
Reg. No.

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020 (CBCSS-UG)
B.C.A.
BCA 2C 04-OPERATIONS RESEARCH
(2019 Admissions)

Time : Two Hours
Maximum : 60 Marks

Section A (Short Answer Type Questions)
 Answer all the questions.
 Each question carries maximum of 2 marks.
 Ceiling 20 marks.

1. Write any two applications of OR ?
2. What do you mean by an objective function of an LPP ?
3. What are the basic assumptions of a LPP ?
4. What do you mean by an artificial variable?
5. What do you mean by basic feasible solution of a Transportation problem?
6. What are Assignment problems ?
7. Define Travelling salesman problem.
8. What do you mean by Degeneracy in a TP ?
9. What is network analysis ?
10. What is meant by a Critical path ? Why should we know which activities are critical ?
11. What is dummy activity?
12. Distinguish between 'Slack' and 'float'.

Section B (Short Essay Type Questions)

Answer all the questions.
Each question carries 5 marks.
Ceiling 30 marks.
13. What are the limitations of OR ?
14. Solve Graphically :

$$
\begin{aligned}
& \text { Maximize }=3 x_{1}+5 x_{2} \\
& \text { subjected to : } x_{1}+2 x_{2} \leq 2,000 \\
& x_{1}+x_{2} \leq 1,500 \\
& x_{2} \leq 600 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

15. A manufacturer of furniture makes two products, chairs and tables. Processing of these products is done on two machines A and B. A chair requires 2 hours on machine A and 6 hours on machine B. A table requires 5 hours on machine and no time on machine B. There are 16 hours of time per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer from a chair is Re. 1 and from a table is Rs. 5 respectively. Formulate the problem into a LPP in order to maximise the total profit?
16. Find the initial solution of the following TP by using Lowest cost entry method :

	D_{1}	D_{2}	D_{3}	Supply
O_{1}	2	7	4	5
O_{2}	3	3	1	8
O_{3}	5	4	7	7
O_{4}	1	6	2	14
Demand \cdot	7	9	18	

17. Find the optimal solution to the following Assignment problem showing the cost for assigning workers to jobs :

Workers $\left[\begin{array}{rrr}x & y & z \\ 18 & 17 & 16 \\ 15 & 13 & 14 \\ 19 & 20 & 21\end{array}\right]$.

